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Abstract—This paper presents a brief theoretical review on 

deep neural network architectures, deep learning procedures, 

as well assome of its possible applications. The paper focuses on 

the most common networks structures: Convolutional Neural 

Network (CNN), Deep Belief Network (DBN) and Stacked 

Auto-encoders (SA). The building blocks which enabled the 

construction of deeper networkssuch as Rectified Linear Unit 

(ReLU) and softmax activation functions, convolution filters, 

restricted Boltzmann machines and autoencoders, are 

explained in the beginning and middle sections of the paper. A 

few examples of hybrid systems are also presented at the last 

sections of the paper. The paper concludes with some 

considerations on the state-of-art work and on the possible 

future applications enabled by deep neural networks. 

 
Index Terms— Autoencoder, Boltzmann Machine, 

Convolutional Neural Network, Deep Leaning Review.  

 

I. INTRODUCTION 

Neural networks algorithms have been applied to a wide 

variety of complex tasks, inareas ranging from computer 

vision, speech recognition, text translation, system 

identification and control, among others. 

The greatest advantage of this algorithm lies on their 

ability to learn from a set of examples, without the need for 

defining a set of explicit rules for a given task. After learning 

how to solve a given problem, an artificial neural network 

would generally perform in the same level or better than a 

rule-based algorithm for the same task, especially for very 

abstract problems such as in computer vision. 

While neural networks were shown to theoretically be able 

to represent any nonlinear function [1], in practice neural 

networks were limited in depth and by long training times. 

What allowedneural networks to achieve the high level of 

performance seen today was the development of a series of 

techniques for training deep networks in the past decade. This 

set of techniques is what is now known as deep learning. 

This paper presents a brief theoretical review on deep  
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neural network’s structures, training procedures, and 

enumerates some of its possible applications. The paper 

focuses on presenting a general description on the inner 

workings of the most common deep architectures, namely the 

Deep Belief Networks (DBN), Stacked Autoencoders (SA) 

and Convolutional Neural Networks (CNN). 

In terms of structure, these three topologies can be 

decomposed in fundamental blocks, such as the ReLU and 

softmax activation functions, convolution filters, restricted 

Boltzmann machines and autoencoders. These blocks, along 

with the associated architectures, are described in the middle 

sections of the paper.  

A few examples of hybrid systemsare also presented at 

later sections of the paper. The paper concludes with some 

considerations on the state-of-art work and on the possible 

future applications enabled bydeep neural networks. 

 

II. BASIC CONCEPTS 

A. Artificial Neuron Structure 

An Artificial Neural Network (ANN) is a parallel 

computational structure loosely inspired on real neural 

networks,capable of learning from large amounts of data. The 

network is trained to generate a set of outputs from the inputs 

presents on the training data. Thus, an ANN can act as 

anuniversal approximator of nonlinear functions [1]. 

These networks are composed of several small units, called 

neurons or nodes, grouped in multiple sequential layers. Each 

neuron in a layer receivessignals fromneurons localized in 

other layers or from the network’s input itself.The neuron 

then responds by emitting a signal of its own, propagating the 

information forward to the next layers in the network. 

 

The output signalynfired by a neuron as a response to an 

input vector xn isdescribed by: 

 

     (       )      (1) 

 

Here,   and   are the connection weight vector and 

activation bias respectively.The mathematical function    is 

a nonlinear function called "activation function” and 

describes the response of the neuron to its collective input. 

Historically,    used to be simple linearfunctions (such as 

in the original perceptron[2]) and sigmoid functions, but with 

the popularization of deeper networks, less computationally 

expensive options such as Rectified Linear Unit (ReLU) 

started to be employed. Fig. 1 shows a plot ofsome of the 

commonly used activation functions. 
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Fig. 1 – Common activation functions. 

 

A special activation function is the “softmax” function, 

which normalizes the sum of outputs of all neurons of the 

previous layer to the interval of 0 to 1. The softmax output 

generatedby a neuron of raw output xi is given by: 

 

       ( )  
   

∑  
   

   

      (2) 

 

Where n is the number of possible classes considered by the 

Softmax layer. 

This is useful for classification problems, where it is 

necessary to calculate the probability of the input to belong to 

a given i class, among all possible n classes [3].For example, 

assume that a softmax layer receives an input    , while all 

other inputs   are zero. This will cause the layer to increase 

the probability of the i class and reduce the probability of all 

other k classes. The output of the network for this scenario is 

shown in Fig. 2. 

 

 
Fig. 2 – Softmax activation function. 

 

B. Feed-Forward and Recurrent Networks 

 

Neural Networks can be categorized in two groups 

depending on information flow direction: feedforward 

networks and recurrent networks.  

Feedforward networksare designed so that input 

information is propagated layer to layer in a unidirectional 

manner.There are no feedback connectionsbetween themore 

advanced layersto theprevious layersin the network. This is 

appropriate for time invariant problems, as the network is not 

required to keep track of past events. Anexample is the 

multi-layer perceptron (MLP)[4], Convolutional [5] and 

Deep Belief networks [6]. An example of feedforward neural 

network is shown at the left side of Fig. 3. 

A recurrent network (also called feedback network) allows 

information to also flow backwards in the network, allowing 

the network to remember paststates. This creates a nonlinear 

dynamical system [7] which can be trained to contextualize 

and retain some of the information already processed by the 

network, making the network more appropriate to tackle time 

variant problems.This added complexity comes with a cost. 

As the ANN’s behaves as a highly nonlinear dynamical 

system, more complex learning algorithms are required to 

ensure the network’sstability [8]. Some examples of 

dynamical ANN are the Hopfield [4], Elman[9] and the Long 

Short-Term Memory (LSTM)[10] networks.An example of a 

recurrent neural network is shown at the right side of Fig. 3. 

 
Fig. 3 – Example of feedforward and recurrent neural 

networks. 

 

C. Training as a nonlinear parameter estimation task 

 

The training procedure of an ANN, in which the networks 

learns to replicate a given function from data, can be thought 

as a parameter estimation problem.An ANN learns by 

changing the weights of the connections of its neurons, so as 

to minimize anestimation error (such as Mean Square Error, 

MSE) between the correct output and the output generated by 

the network. Due to the nonlinearity present in activation 

functions, directmethods such as least squares estimation 

cannotbe applied, and therefore, iterative methods are 

required[11]. 

The most common method for adjusting the weights in a 

neural network is the backpropagation algorithm and its 

variations, such as the Levenberg-Marquardt method [12]. 

The algorithm performs gradient descent over an 

error-measuring function, by applying the chain rule over 

each layer to find the appropriate adjustment for every weight 

present on the network.  

For shallow networks with one or two hidden layers, it is 

possible to use backpropagation algorithms over the entire 

network, but for deeper architectures, the gradient either 

fades away over layers (referred as “vanishing gradient 

problem”) or increases indefinitely (referred as “exploding 

gradient problem”), with the former problem especially 

prevalent on recurrent networks[13]. 

Another issue is data availability and reliability. For 

problems where data is often readily available but just as 

often mislabeled (for example, user generated content in 

video streaming websites), unsupervised learning 

methods(non-reliant on labeled data) are required. 

In some other problems, training data is limited orfewer 

than the number of parameters to be adjusted.This enables the 

network to simply memorize the training data, generating an 
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exact copy of the output during training, rather than 

generalizing for the underlying model. This problem is 

referred as“overfitting” in the literature [13] [14]. 

To prevent these problems, several differentcomponents 

for building deeper nets were designed,such as restricted 

Boltzmann machines, autoencoders and convolution kernels, 

providing the foundation of what is now known as “deep 

learning”. A common traitshared by all of these structures is 

that they provide means forextracting salient features 

contained in input data, generating a more abstract set of 

inputs to beprocessed by the next block. The training at this 

point is in most cases unsupervised. The final blocksprovide 

a highly abstract preprocessed data, which is then used for 

generating the network’s output. The learning in this final 

stage is supervised, that is, uses the labeled data in the 

training set. The following sections describe these structures 

in more detail. 

III. DEEP BELIEF NEURAL NETWORKS  

A. Boltzmann Machines 

A Boltzmann Machine (BM) is a network model 

introduced by Hinton,Sejnowski and Ackley in 1985[15]. 

This structure resemblesa Hopfield network, in the sense that 

both are capable of learning the internal distribution of a 

training set. However, aRestricted Boltzmann Machine 

(RBM)uses a stochastic activation function based on the 

Boltzmann distribution, and its training is inspired on 

thermodynamic principles. 

This network comprises a visible input layer and a hidden 

layer, with each neuron being connected to all other neurons 

in the network. The visible layer contains neurons whose 

states can be directly overridden by an input signal, while 

hidden layer comprises neurons which can only be accessed 

by the visible neurons. This topology is shown at the left side 

of Fig. 4. 

Each i-th neuron has two states, “on”(     )  or 

“off”(    ). The networks internal energy Eis given by: 

   ∑            ∑           (3) 

Where    is bias of thei-th neuron, and     is the 

connection weight between the i-th and j-th neurons. The 

energy difference   between “off” and “on” states of the i-th 

neuron is given by: 

    ∑               (4) 

The probability   of the i-th neuron setting its state to “on” 

follows the Boltzmann distribution,hence the network’s 

name. 

   
 

(         )
       (5) 

Where T is analogous to system temperature. It can be 

noticed that (3) (4) and (5) model a system steadily losing 

energy, eventually reaching a thermal equilibrium state. 

BM training has the goal of minimizing the difference 

between the probability distribution of the state 

ofvisibleneuronsat thermal equilibrium, P
-
, and the 

probability distribution of the training samples, P
+
.The 

difference between two distributions can be measured by the 

Kullback-Leibler’s (KL) divergence, G: 

 

  ∑   ( )   (
  ( )

  ( )
)      (6) 

Where V denotes each one of the visible input neurons. 

Fortunately, the gradient of G in relation to any given weight 

    has a very simple form: 

  

    
  

 

 
(   

     
 )      (7) 

Where    
 is the probability of both i-th and j-th being 

“on” at thermal equilibrium, with all input neuronsoverridden 

by a training signal, while   
  denotes the probability of the 

same event happening without the influence of the training 

signal. 

This indicates that a simple rule can be applied to change 

the weights. Assuming a step size of  , the variation on 

weights     and on biases    is given by: 

 

      (   
     

 )      (8) 

     (  
    

 )        (9) 

 

While (8) and (9) are fairly simple learning rules, the 

excessive complexity of the BM’s topology causes the 

learning to be inefficient for complex problems. Likewise, 

the training requires that the BM is simulated until it reaches 

thermal equilibrium, which increases training complexity 

[16]. 

An improvement on training performance can be achieved 

restricting BM’s topology, creating a so-called restricted 

Boltzmann Machine (RBM), with the most common 

restriction being eliminating connections between neurons in 

the same layer [17]. This RBM is shownat the right side of 

the Fig. 4. 

 

 
Fig. 4 – Unrestricted and Restricted Boltzmann Machines 

 

The neuron state determination process is also simplified 

as a result of the topology restriction. The probability of a 

givenneuron (visible or hidden) being active, given the 

current state of the neurons on the opposite layer, can now be 

written similarly to (1). 

 

 (      )   (   ∑       )    (10) 

 (      )   (   ∑       )    (11) 

 

Where  (    ) and  (    ) are the probability of a 

visible or a hidden layer being on the active state,     is the 

connection weight between neurons iand j, and    and    are 

biases for the visible and hidden neurons respectively. In the 

RBM’s case,   is a logistic function. 

The learning function can also be simplified, as to not 

depend on simulating the machine to its thermal equilibrium. 

Instead, the RBM can be simulated for a k number of cycles, 

with the state of all neurons (including those on the hidden 

layer) being sampled for the learning rule. 

Initially, the visible neurons in the RBM are overridden by 

with an input vector contained in the training set, so thatall 

hidden neurons change theirstate accordingly to (11). The 

state of all neurons is represented by           . The 
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visible neurons are then unclamped, sothat the network isfree 

toreconstruct the input vector using the information stored in 

the hidden layers. The neurons are then updated sequentially, 

with their states being set accordingly to (10) and (11). This 

procedure is called Gibb’s sampling. After k cycles 

simulating the network by Gibb’s sampling, the state of the 

neurons               is then sampled. The weight 

adjustment is given by: 

 

      (                        )  (12) 

This algorithm is called Contrastive Divergence, or CD-k 

[18]. It is much faster learning algorithm, as it does not 

require simulating the RBM to its equilibrium point. Even 

though the learning rule in (12) does not follow the divergent 

Gdefined on (6), it stillprovides a sufficiently precise 

approximation for training the RBM, even for a single 

simulation cycle (k=1) [19]. 

 

B. Deep Belief Networks (DBN) 

Deep BeliefNetworks (or more commonly Bayesian 

networks) are statistical models that represent a set of 

variables along with their conditional dependencies. This 

network can infer the probability of an event being caused by 

one of several possible known causes.An example of this 

structure is shown in Fig. 5, with each event’s dependency on 

others is marked with arrows. 

 
Fig. 5 – Belief network general structure. 

 

This network can infer variables, parameters and hidden 

variables from the distribution of a given event. Thiscapacity 

for inference and general structure has been perceived as 

similar those found onBoltzmann Machines in the 

1980’s[14], but due to the inherentcomplexity of BM’s 

topology and its training, this similarity could not be further 

explored until two decades later. 

The creation of RBM’s in the late 1980’s [16] andthe 

development of faster algorithms for their training in early 

2000’s [18] led to development of deep belief nets 

(DBN)composed of stacked RBMs. The proposed structure is 

seen on Fig. 6. 

 
Fig. 6 – Stacked RBMs used on a DBN. 

The structure presented in Fig. 5 shows a stack ofNRBMs. 

The visible layer of the bottom RBM is used as the input layer 

of the DBN, with the hidden layer acting as input for the next 

RBM. All RBMs are connected in the same way, forming a 

sequential structure up to hidden layer of the last RBM, 

which providesthe output of the stack. 

Each one the RBMs are trained separately in an 

unsupervised manner, from the bottom RBM’s to the top. 

After finishing training an RBM, their hidden neurons will 

register some of the most salient characteristics contained on 

its training inputs. The output of the trained RBM is then used 

as a training input for the next RBM in the stack, and so on. 

As a result, each RBM extracts a feature present in the 

training data, with higher layers extracting increasingly more 

abstract information [20]. 

After training all RBMs in the stack, the output from the 

top layer can be used to activate a classifier network using the 

softmaxfunction. The training in this stage is now supervised, 

as the labeled datais associated with the features extracted by 

the stack[21]. 
 

IV. STACKED AUTOENCODERS 

A. Autoencoders 

Another building block which can be stacked to form a 

deep network is the autoencoder, also known in literature as 

anauto associator. An auto-encoder is a neural network 

designed for creating an efficient representation of its input 

data, often with reduced dimensionality. Like the RBM, it 

can be used for extracting features from an unlabeled set of 

data, although their training procedures are quite different 

[22]. 

The traditional autoencoder is a simple network trained to 

regenerate its own input as its output, hence the structure’s 

name. Learning can be done through the standard 

backpropagationalgorithm, in the same way as the MLP.As 

the training goal is to learn its own input value,it does 

notrequire labeled data, making it a form of unsupervised 

learning. 

After the training is completed, the hidden layers of the 

autoencoder will have learned a useful encoding of the data, 

based on the distribution of the training data. Likewise, the 

output layer will also learn a form to decode and regenerate 

the original data from its encoding [23]. 

A common issue of the traditional autoencoder’s training 

is that the network has the possibility of learning the identity 

function, preventing the autoencoder from learning a more 

useful representation of the data.  

To avoid this problem, a few variations of the autoencoder 

have been designed, such as denoising autoencoders 

andsparse autocoders. Denoising autoencoders explicitly 

introduces noise in the input’s training set, so that the 

network is trained to filter the noise present in the 

input[24].The sparse autoencoder introduces an additional 

penalty during training to constrainhidden neurons 

activations and weights to a set of predetermined values, 

preventing the network from learning the identity[25]. Both 

techniques forces the autoencoder to rely on features 

contained in the training data.  

A simpler solution for the issue is by having a smaller 

number of hidden neurons than inputs in the autoencoder, 

creating an under-complete system.This prevents the network 

from learning the identity function, although at the cost of 

learning less features compared with over-complete 

autoencoders [21]. 
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An illustrated example of a MLP network trained as an 

autoencoder is shown on Fig. 7. After training the MLP either 

traditionally or using any of the variants presented, the 

autoencoder’s input x is encoded by the hidden layer, creating 

aencoding function x’=fencoding(x). The output 

layerapproximatelyreconstructs the original input as    . 
 

 
Fig. 7 – Example of an autoencoder 

 

B. Stacked Autoencoders 

Autoencoders can be stacked to create a single deep 

network,similarly to how RBMs are used on a DBN. The first 

autoencoder is trained to encode and regenerate the 

network’s input. After training, the decoding layer is 

discarded, and the hidden layers’ output (the encoded 

information x’) is used as input to train the next autoencoder. 

This procedure is repeated for each autoencoder in 

succession. After all autoencoders in the stack have been 

trained, the stack is then connected to the input of a fully 

connected network, which will generate the output of the 

network. Finally, all layers are then fine-tuned using 

supervised training[13]. 

Fig. 8 shows the structure of a deep network formed by the 

stacked autoencoders (SA). While this is very similar to DBN 

in structure, SA composed of traditional auto-encoders has 

slightly inferior results compared to DBN[26] due to the 

CD-k algorithm being a better approximation of 

log-likelihood gradient than the reconstruction error gradient, 

while the denoising variation of the autoencoder performed 

similarly to DBN [13]. 

 

 
Fig. 8 – Stacked autoencoder structure 

 

V. CONVOLUTIONAL NEURAL NETWORKS (CNN) 

A. CNN development history 

Both methods for creating the deep neural nets presented 

previously, DBN and SA, make use of greedy layer-wise 

training to avoid the vanishing gradient problem. Until 2006, 

there were no means for training deep networks withfully 

connectedlayers.  

However,a specialized type of deep network that could be 

trained traditionally was developed two decades prior to the 

appearance of DBNs. These networks are the Convolutional 

Neural Networks (CNN or alternatively ConvNet). They 

have a fanned-out structure, which simplify its training. 

Convolutional neural networks follow an architecture 

loosely inspired on the visual system of living beings. The 

works of Hubel and Wiesel, at the end of the 1950s and 

through the 1960s, gave start to this line of research by 

presenting the response generated by the striate cortex of cats 

to several moving stimuli of light [27]. 

In their experiment, it was found that some isolated 

neurons (referred by the authors as “simple” cells) fired only 

when subject to image edges in veryspecific positions and 

orientations, while some others neurons with larger receptive 

fields (referred as “complex” neurons) reacted specifically to 

more complex stimuli, whilebeing insensitive to changes in 

position. These properties had been verified in the nervous 

system of cats[26] and monkeys [28]. 

The concept that an image could be processed by several 

parallel processing units, each one absorbing increasingly 

abstract features of the image inspired the development of the 

“neocognitron” network by K. Fukushima, which is 

considered to be the first example of CNN in literature [29]. 

The neocognitron is composed of several sequential modules, 

with each module comprising two layer of neurons.  The first 

layer contains unitsthat resemblethe simpler neurons 

described by Hubel and Wiesel, which are responsible for 

extracting edges from the image.The second layer contains 

units that resemble the complex neurons, which are less 

sensitive to position. The complex neurons’ outputs feed the 

next module, creating a serialized structure similar to DBNs 

and SA. Another similarity with modern networks is that the 

Neocognitron uses unsupervised training to learn features 

present in the data. 

The work inspired the design of many other networks 

based on this hierarchicalarchitectures, such as the 

convolutional network developed by LeCun in 1989 for 

recognizing hand-written digits [30]. 

This networkaccepts as input an image of 16x16 pixel 

andcontains three hidden layers.A single output layer 

classifiesthe ten possible digits in the input image.  

The first hidden layer has 12 convolution kernels, each one 

composed of 64 neurons, which scans the image for local 

features. By performing spatial convolution of the input with 

each kernel,twelve feature maps of 8x8 pixelsare obtained.  

The second layer has 12 convolution kernels, each one 

with 16 neurons, creating a 4x4 pixel feature map. The third 

layer had 30 neurons and processed the more abstract features 

contained in the image. Backpropagation was applied to learn 

all connection and kernel weights. 

Further work on this network led to the development of 

Lenet-5 by the same author in 1998[31], which had a 

profound impact in the field of computervision. Lenet-5 has 7 

layers and accepts a 32x32 pixel image as its input. 

The first layer extracts 6 feature maps of 28x28 pixels, 
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obtained by performing convolution of the input with a 5x5 

pixel kernel. The second layer subsamples the feature maps 

into smaller feature maps of 14x14 pixels, by subdividing the 

feature maps into groups of 2x2 pixels and averaging their 

values. 

The third layer extracts 16 feature maps of 10x10 pixels, 

byperforming convolutions with5x5 pixel kernels. The 16 

feature maps arethen subsampled by the fourth layer in the 

same way as the second layer, generating 16 feature maps of 

5x5 pixels. 

The fifth layer extracts 120 feature maps of 1x1 pixels, by 

convoluting its input with 5x5-pixel kernels. Due to the size 

of the resulting feature map (composed of a single pixel), this 

layer acts as a fully connected layer.  

The sixth layer has 84 neurons. This number has been 

chosen so that its output can be rearranged to form a 

7x12-pixel image. The seventh and final layer classifies the 

network’s input, through Euclidean Radial Basis Functions 

(RBF) units. There is one RBF unit for each possible class, 

with the centers hyper-parameters of each RBF purposely 

defined to compare the image generated by the sixth layer 

with all of the possible classes. 

LeNet 5 was superior to many other character 

identification algorithms of its time. This topology based 

onsequential convolutions and sub sampling layers is still 

used in modern CNNs.In fact, the best algorithms for object 

identification on computer vision are based on CNNs, with 

examples such as GoogleLeNet, a 22-layer deep CNNwhich 

achieved a classification error of about 6% on ImageNet’s 

Large-Scale Visual Recognition Challenge in 2014[32][33]. 

The use of GPUs for training CNNs, a technique introduced 

in the 2000’s,greatly reduced learningtimes [34][35], further 

popularizing this architecture. 

 

B. CNN structure 

Current CNNs are composed of several layers reducing in 

size, with each layer applying a form of compression on its 

input data. The neurons on these layers are not fully 

connected to the other layers, greatly reducing the number of 

weights to be adjusted by training. Data is reduced in size 

from layer to layer, until the final layers.The final layers are 

usually densely connected, so as to usethe compressed data to 

perform classification or regression. An example of typical 

CNN structure used for classifying images is shown in Fig. 9. 

 

 
Fig. 9 – Typical CNN structure for image classification 

 

The initial compression stage is composed of two types of 

layers, convolution layers and pooling layers. Convolution 

layers are the main building block in CNNs. The layer’s input 

is swept by a filter (the convolution kernel) designed to 

extract a specific feature. This extraction is done by 

performingcross-correlation (convolution over a mirrored 

kernel) of the input with the kernel, centered on the first 

element of the input. After each convolution, the 

kerneladvancesa number of elements on the input before 

executing the next convolution.The number of elements 

advanced is called “stride”. This procedure is repeated until 

the entire input is swept by the kernel. A ReLU function may 

be used after each convolution to increase nonlinearity in 

activation [36]. 

The second type of layer on the compression stage of 

CNNs the pooling layer. These are usually placed after a 

number of convolution layers. Pooling refers to down 

sampling the input by partitioning it into smaller groups of 

elements, and then performing anonlinear function over the 

subgroup elements, called the pooling function. The output of 

the pooling function for each subgroup is used as the layer’s 

output. Historically, averaging and tanh was used as pooling 

function as seen in LeNet-5[30], but recentCNNs usemax, as 

it can converge faster and have better generalization in 

practice [37]. 

Fig. 10 shows the results of an example image convoluted 

by four 3x3 pixel kernels, followed by a 2x2 pixel max 

pooling. The white squares represent an element of value1, 

gray squares represent0 and black squares -1. Notice that 

each kernel extracts a different set of edges from the image. 

 
Fig. 10 – Image processed by convolutional kernels and max 

operations. 

 

The second stage performs generates the output of the 

network using the data acquired by the first stage. The final 

layers are fully connected, with large numbers of adjustable 

parameters. To improve learning speed and preventing 

neuron saturation, ReLU is often used as activation 

function.Another problem caused by the large number of 

weights is overfitting, as the number of examples is often 

outnumbered by the number of parameters in several 

applications.  

A recent developedtechnique for preventing overfitting is 

“dropout”. This technique consists in randomly deactivating 

neurons during training with probability p. This forces the 

network to not rely on a few specific neurons, therefore 

improving network robustness. After training, all neurons 

may be used normally, buttheir outputs(or their 

corresponding weights) should be multiplied by a factor 1-p 

to compensate for the deactivation procedure[38]. 

VI. HYBRID NETWORKS 

A. Generative Adversarial Networks (GAN) 

The three networks presented previously can be combined 

with other topologies and artificial intelligence techniques in 

order to create a larger hybrid network. This is done to allow 

domain-specific networks to function beyond their original 

design purposes and limitations. The most common hybrids 

combine CNN architectures with other technologies, justified 

by the CNN’s simplicity and impact in the computer vision 

community. 
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A recent example is Generative Adversarial Networks 

(GAN) created in 2014 [39]. This network combines two 

smaller networks acting in opposing roles, as a generative 

network and a discriminator, often in a form of zero-sum 

game. Differently from the majority of other deep networks, 

which are focused on classification problems, GANs are 

primarily used as a generative model, and are often used in 

practice for generating synthetic images [40]. 

The GAN’s generative network, G, is trained to generate 

data samples that match thedistribution presenton the training 

set, similarly to how a Boltzmann machine is trained to 

generate new data. The second network, the discriminatorD, 

is trained to identify the synthetic data created by the 

generative network among the real examples contained in the 

training set. This discriminator is often a CNN. 

Both networks are trained alternately, in a form so that the 

loss functionfor Gand Dcanbe rewritten to represent 

aminmax game. Training is often done using gradient descent 

algorithms, but due to the nature of the game between G and 

D, the algorithm may fail to converge, as improvement of one 

network may incur a decrease on the adversary performance 

[41]. 

This procedure drives both networks into becoming better 

at generating and detecting the synthetic data. The training 

proceeds until the synthetic data created by G is 

undistinguishable from the training data. 

 

B. RBM –CNN hybrids 

Due to its generative capability and feature extraction 

properties, RBMs are often paired with CNNs and other 

Artificial Intelligence (AI) techniques.  

A structure proposed in [42] is a CNN-RBM hybrid, for 

face verification in wild conditions. The last stages of CNN 

can be connectedto stack of RBMs, creating a form ofDBN 

on top of the convolutional stages. The method is shown to 

have comparable results with other high precision methods, 

with the advantage of not requiring hand-made filters for 

extracting features and strong alignment. 

Another example of a CNN-RBM hybrid is shown in [43] 

for speech recognition. The structure presented in this work is 

a CNN that uses RBMs as the convolutional filters, creating a 

stochastic convolution layer. The RBMs can be pretrained to 

learn the correct filters. This improves network performance 

if the training set is small.  

 

C. Autoencoder hybrids 

Autoencoders hybrids are not as common as RBM and 

CNN hybrids, as the classical forms of the autoencoder lack 

some of the interesting properties of the former topologies. 

However, a recentvariation of the autoencoder called 

variational autoencoder (VAE) can act as generative model, 

which is a desirable property for creating hybrid systems. 

A VAE combines variational inference and deep learning 

in a direct probabilistic graphical model. Rather than directly 

mappingthe input valueslike in the classical autoencoder’s 

training, the VAE’s trainingaims to model the parameters of 

the training set distribution, treating the set of inputs as 

probabilistic values.The training tries tominimize the KL 

divergence between the training input set and the 

reconstructed set. 

After training, a VAE will learn not only the mean value of 

a given input, but also its variance. Thus, it is able to 

regenerateinputs though stochastic procedures[44]. This 

property can be used in conjunction with a CNN and 

recurrent models to generate text as presented in [45]. 

Moreover, a VAE can act as generative network for use in a 

GANs, as reported in [46]. 

VII. CONCLUSION 

This paper has described the basic building blocks which 

constitute what is now known as Deep Learning, as well as 

some of the most common network architectures that can be 

built with those blocks. 

The increase of depth allowed neural networks to achieve 

much higher levels of precision as a function approximator 

compared to their shallow counterparts. While any 

shallownetworks capable of approximating a function given 

enough neurons, the number of neurons required for a precise 

approximation increases exponentially as a result of the curse 

of dimensionality. The addition of extra layers in the network 

leads to a higher level of abstraction in data processing, and 

therefore higher precision, as seen on all of the architectures 

shown in the paper.  

As a result of this increase on precision, deep neural 

networks have been used as solution for many problems for 

which there’s no closed analytical solution, with many 

networks achieving much better performance over traditional 

rule-based algorithms.With the increase on data availability 

and hardware capacity, it should be expected that many of the 

rule-based algorithms used today for tacklingcomplex 

problems to be improved or even be superseded by 

neural-network based approaches in the near future. 

ACKNOWLEDGMENT 

We’d like to thank Dr. Osamu Saotome for his advice 

during the preparation of this article. 

REFERENCES 

[1] K.Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward 

networks are universal approximators”.in Neural networks,2(5), 1989, 

pp-pp 359-366. 
[2] F. Rosenblatt. "The perceptron: a probabilistic model for information 

storage and organization in the brain." Psychological review 

65.6,1958, 386. 
[3] I. Goodfellow, Y.Bengio, andA.Courville.“Deep learning”. MIT press, 

2016. 

[4] R.P. Lippmann. "An introduction to computing with neural nets." IEEE 
Assp magazine Vol. 4, no.2 1987. pp 4-22. 

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based 
learning applied to document recognition." Proceedings of the IEEE 

86, no. 11,1998.  pp. 2278-2324. 

[6] G.E Hinton, S. Osindero, and Y.W. Teh. "A fast learning algorithm for 
deep belief nets." Neural computation 18, no. 7, 2006, pp. 1527-1554. 

[7] J. Singh andN.Barabanov. “Stability of discrete time recurrent neural 

networks and nonlinear optimization problems”. Neural Networks, 74, 
2016, pp.58-72. 

[8] J.N. Knight, “Stability analysis of recurrent neural networks with 

applications”.  Fort Collins, CO: Colorado State University.2008. 

[9] Y. Cheng, Wei-Min Qi, and Wei-you Cai. "Dynamic properties of 

Elman and modified Elman neural network." Proceedings. 

International Conference on Machine Learning and Cybernetics. Vol. 
2. IEEE, 2002. 

[10] S.Hochreiter and J.Schmidhuber. "Long short-term memory." Neural 

computation, vol 9 no.8  1997, pp. 1735-1780. 
[11] B. J.T Morgan. "Non-Linear Parameter Estimation- an Integrated 

System in Basic." Journal of the Royal Statistical Society: Series C 

(Applied Statistics) 37, no. 3,1988, pp. 449-450. 
[12] M.T. Hagan, and M. B. Menhaj. "Training feedforward networks with 

the Marquardt algorithm." IEEE transactions on Neural Networks 5, 

no. 6, 1994. pp. 989-993. 
[13] Y. Bengio. "Learning deep architectures for AI." Foundations and 

trends® in Machine Learning 2, no. 1. 2009, pp. 1-127. 



 

A Brief Didactic Theoretical Review on Convolutional Neural Networks, Deep Belief Networks and Stacked 

Auto-Encoders 

                                                                                                  12                                                           www.erpublication.org 

[14] S. Venkataraman, D. Metaxas, D. Fradkin, C.Kulikowski, and I. 

Muchnik. “Distinguishing mislabeled data from correctly labeled data 
in classifier design”. In 16th IEEE International Conference on Tools 

with Artificial Intelligence, November 2004, pp. 668-672.  

[15] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. "A learning algorithm 
for Boltzmann machines." Cognitive science 9.1 1985, pp. 147-169. 

[16] A. Fischer and C. Igel. "Training restricted Boltzmann machines: An 

introduction." Pattern Recognition 47.1,2014, pp. 25-39. 
[17] P. Smolensky. “Information processing in dynamical systems: 

Foundations of harmony theory.” No. CU-CS-321-86. Colorado Univ 

at Boulder Dept of Computer Science, 1986. 
[18] G.E. Hinton. "A practical guide to training restricted Boltzmann 

machines." In Neural networks: Tricks of the trade, pp. 599-619. 

Springer, Berlin, Heidelberg, 2012. 
[19] G.E. Hinton. "Training products of experts by minimizing contrastive 

divergence." Neural computation 14, no. 8,2002, pp. 1771-1800. 

[20] G.E. Hinton, S. Osindero, and Y.W. Teh. "A fast learning algorithm for 
deep belief nets." Neural computation 18, no. 7. 2006,pp. 1527-1554. 

[21] A. Mohamed, G. Dahl, and G. Hinton. "Deep belief networks for phone 

recognition." In: Nips workshop on deep learning for speech 
recognition and related applications, vol. 1, no. 9, 2009. p. 39. 

[22] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, andP.A. Manzagol. 

“Stacked denoising autoencoders: Learning useful representations in a 
deep network with a local denoising criterion”. Journal of machine 

learning research, 11(Dec) 2010, pp. 3371-3408. 

[23] S.P. Luttrell. “Hierarchical self-organizing networks”. In: Proc. 1st IEE 
Conf. Artificial Neural Networks. British Neural Network Soc., 1989. 

pp. 2-6. 
[24] D. Erhan, P.A. Manzagol, Y. Bengio, S.Bengio, andP. Vincent. “The 

difficulty of training deep architectures and the effect of unsupervised 

pre-training.” In Artificial Intelligence and Statistics,2009,  pp. 
153-160. 

[25] A. Ng. “Sparse autoencoder”. CS294A Lecture notes, 72, 2011,pp 

1-19. 
[26] Y. Bengio, P. Lamblin, D. PopoviciandH. Larochelle. “Greedy 

layer-wise training of deep networks”. In Advances in neural 

information processing systems, 2007, pp. 153-160. 
[27] D.H. Hubel, andT. N. Wiesel. “Receptive fields, binocular interaction 

and functional architecture in the cat's visual cortex.” The Journal of 

physiology, 160(1), 1962, pp 106-154. 
[28] D.H. Hubel, andT.N. Wiesel. “Receptive fields and functional 

architecture of monkey striate cortex”. The Journal of physiology, 

195(1), 1968,pp. 215-243. 
[29] Fukushima, K. “Neocognitron: A self-organizing neural network 

model for a mechanism of pattern recognition unaffected by shift in 

position”. Biological cybernetics, 36(4), 1980,pp. 193-202. 
[30] Y. LeCun, B. Boser, J.S Denker, D. Henderson,  R.E. Howard, W. 

Hubbard, andL.D. Jackel,. “Backpropagation applied to handwritten 

zip code recognition”. Neural computation, 1(4), 1989, pp 541-551. 
[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based 

learning applied to document recognition”. Proceedings of the IEEE, 

86(11), 1998,pp. 2278-2324. 
[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, and A. 

Rabinovich. “Going deeper with convolutions”. In: Proceedings of the 

IEEE conference on computer vision and pattern recognition, 2015, pp. 
1-9. 

[33] O. Russakovsky, et. Al. "Imagenet large scale visual recognition 

challenge." International journal of computer vision 115.3. 2015, pp. 
211-252. 

[34] K. S. Oh, and K. Jung. "GPU implementation of neural networks." 

Pattern Recognition 37.6, 2004, pp 1311-1314. 
[35] K. Chellapilla, S. Puri, and P. Simard. "High performance 

convolutional neural networks for document processing." 2006. 

[36] V. Romanuke. “Appropriate number and allocation of ReLUs in 
convolutional neural networks”. NaukoviVisti NTUU KPI, (1), 2017, 

pp. 69-78. 

[37] D. Scherer, A. Müller, andS. Behnke.“Evaluation of pooling 
operations in convolutional architectures for object recognition.” In 

International conference on artificial neural networks. Springer, Berlin, 

Heidelberg. 2010, September, pp. 92-101. 
[38] A. Krizhevsky, I. Sutskever, andG.E. Hinton. “Imagenet classification 

with deep convolutional neural networks”. In Advances in neural 

information processing systems. 2012, pp. 1097-1105. 
[39] I. Goodfellow et al. “Generative adversarial nets.” In: Advances in 

neural information processing systems. 2014. pp. 2672-2680. 

[40] T.C. Wang, M.Y. Liu, J.Y. Zhu, A.Tao, J. Kautz, and B. Catanzaro. 
“High-resolution image synthesis and semantic manipulation with 

conditional gans”. In: Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2018,pp. 8798-8807. 

[41] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and 

X. Chen, “Improved techniques for training gans”. In Advances in 
neural information processing systems, 2016. pp. 2234-2242. 

[42] Y. Sun, X. Wang, andX. Tang.“Hybrid deep learning for face 

verification.” In Proceedings of the IEEE international conference on 
computer vision, 2013, pp. 1489-1496. 

[43] O. Abdel-Hamid, L. Deng, and D. Yu. “Exploring convolutional neural 

network structures and optimization techniques for speech 
recognition.” In Interspeech,Vol. 11,2013, pp. 73-5. 

[44] J.An, and S.Cho. “Variational autoencoder based anomaly detection 

using reconstruction probability”. Special Lecture on IE, 2(1), 2015. 
[45] S.Semeniuta, A. Severyn, and E. Barth. “A hybrid convolutional 

variational autoencoder for text generation”. arXiv preprint 

arXiv:1702.02390, 2017. 
[46] L. Mescheder, S. Nowozin, and A. Geiger. “Adversarial variational 

bayes: Unifying variational autoencoders and generative adversarial 

networks”. In Proceedings of the 34th International Conference on 
Machine Learning-Volume 70. 2017, August pp. 2391-2400. JMLR. 

org. 

 

 

Rômulo Fernandes da Costa received his B.S. in Electrical Engineering 

from Sao Paulo State University (UNESP),and received his MsC in 
Electronic Engineering from Aeronautics Institute of Technology (ITA). He 

is currently a PhD candidate at ITA, contributing with the Laboratories of 

Space Robotics and Radar Signal Processing. His main areas of research are 
space robotics, machine learning and radar signal processing. 

  
Sarasuaty Megume Hayashi Yelisetty received her B. S. in Computer 

Engineering from Vale do Paraiba University (UNIVAP), and received her 

MsC in Computer Engineering from Aeronautics Institute of Technology 
(ITA). She is currently a PhD candidate at ITA. Additionally, she has been 

working at EMBRAER in software/airborne electronic hardware processes 

during the last 8 years and has recognized experience in standards used for 
airborne system and software such as DO-178B/C, DO-254 and 

MIL-STD-498. 

 

Johnny Cardoso Marques received the B.S. in Computer Engineering 

from University of the State of Rio de Janeiro (UERJ), the M.Sc. (in 

Aeronautical Engineering) and a PhD. (in Electronic and Computer 
Engineering) both from Aeronautics Institute of Technology (ITA). He is a 

current professor in the Aeronautics Institute of Technology (ITA). 

Additionally, he worked at EMBRAER in software processes definition for 
15 years and has recognized experience in standards used for airborne 

systems and software such as DO-178C, DO-254, ARP-4754 and DO-200B. 

He is also part of several committees in IEEE Standards Association. 

 

Paulo Marcelo Tasinaffo is graduated in Mechanical Engineering from 

the Federal University of Itajubá/MG (UNIFEI, 1996), obtaining a Master's 
degree in Mechanical Engineering from the same Institution in 1998. In 

2003, he received a Doctorate in Space Engineering and Technology from 

the National Institute of Space Research (INPE) in Brazil. He is currently a 
full professor of the Aeronautical Technological Institute (ITA) in São José 

dos Campos/SP also in Brazil, with experience in Aerospace and Computer 

Engineering and with emphasis on Artificial Neural Networks. The Prof. 
Tasinaffo works mainly in the following subjects: modeling of non-linear 

dynamic systems, computational mathematics, artificial intelligence, expert 

systems, intelligent agents, neural control structures, evolutionary 
computation and stochastic processes. 

 

 


